Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Int J Biol Macromol ; : 131498, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38614167

RESUMO

Momordica charantia L. is a kind of vegetable with medicinal value. As the main component of the vegetable, Momordica charantia polysaccharides (MCPs) mainly consist of galactose, galacturonic acid, xylose, rhamnose, mannose and the molecular weight range is 4.33 × 103-1.16 × 106 Da. MCPs have been found to have various biological activities in recent years, such as anti-oxidation, anti-diabetes, anti-brain injury, anti-obesity, immunomodulatory and anti-inflammation. In this review, we systematically summarized the extraction methods, structural characteristics and physicochemical properties of MCPs. Especially MCPs modulate gut microbiota and cause the alterations of metabolic products, which can regulate different signaling pathways and target gene expressions to exert various functions. Meanwhile, the potential structure-activity relationships of MCPs were analyzed to provide a scientific basis for better development or modification of MCPs. Future researches on MCPs should focus on industrial extraction and molecular mechanisms. In East Asia, Momordica charantia L. is used as both food and medicine. It is not clear whether MCP has its unique biological effects. Further study on the difference between MCPs and other food-derived polysaccharides will be helpful to the development and potential application of Momordica charantia L.

2.
Int J Biol Macromol ; 263(Pt 2): 130473, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423437

RESUMO

Momordica Charantia Polysaccharide (MCP) is a key bioactive compound derived from bitter melon fruit. This review summarizes the advancements in MCP research, including extraction techniques, biological activities, and mechanisms. MCP can be extracted using various methods, and has demonstrated hypoglycemic, antioxidant, anti-inflammatory, and immunoregulatory effects. Research suggests that MCP may regulate metabolic enzymes, oxidative stress reactions, and inflammatory pathways. The review highlights the potential applications of MCP in areas such as anti-diabetes, antioxidant, anti-inflammatory, and immunoregulatory research. Future research should focus on elucidating the molecular mechanisms of MCP and optimizing extraction methods. This review provides a foundation for further research and utilization of MCP.


Assuntos
Antioxidantes , Momordica charantia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Anti-Inflamatórios
3.
Plant Foods Hum Nutr ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358638

RESUMO

Momordica charantia L. has been remained a well-known medicinal vegetable used traditionally. However, which part is most effective against which disorder, has been remained undiscovered yet. The objective of this study was to examine the antimicrobial, antihyperlipidemic and antihyperglycemic activities of peel, flesh, and seeds of bitter gourd, through in vitro and in vivo assays. Ethanolic extracts from powders of three fractions of bitter gourd were assessed for antimicrobial potential against bacterial and fungal strains, whereas, powders of these fractions were used to determine antihyperlipidemic and antihyperglycemic activity, in alloxan induced diabetic rats. Our results showed that BSE exhibited better antimicrobial activity against Bacillus cereus, whereas BFE exhibited better against Escherichia coli. Blood glucose was significantly lowered by all three powders in a dose dependent manner, when fed to diabetic rats, with the highest decrease by BSP, which reduced the glucose level from 296.20 ± 2.00 mg/dl to 123.10 ± 0.80 mg/dl, at 15 mg dose, after 28 days trial. Elevated levels of TC (101.18 ± 0.65 mg/dl), TG (83.69 ± 0.61 mg/dl) and LDL-C (25.90 ± 0.09 mg/dl) in positive control rats were lowered down in well manners by BSP at 15 mg dose, to 86.30 ± 0.53, 67.70 ± 0.53 and 19.32 ± 0.06 mg/dl, respectively. As compared to BFP and BPP, BSP showed significant involvement in antibacterial, antihyperglycemic, and antihyperlipidemic actions. Along with the edible flesh, peels and seeds, which are usually discarded as waste, could also be utilized for development of pharma foods capable of promoting health.

4.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334124

RESUMO

Diabetes mellitus (DM) is a multifactorial life-threatening endocrine disease characterized by abnormalities in glucose metabolism. It is a chronic metabolic disease that involves multiple enzymes such as α-amylase and α-glucosidases. Inhibition of these enzymes has been identified as a promising method for managing diabetes, and researchers are currently focusing on discovering novel α-amylase and α-glucosidase inhibitors for diabetes therapy. Hence, we have selected 12 bioactive compounds from the Momordica charantia (MC) plant and performed a virtual screening and molecular dynamics investigation to identify natural inhibitors of α-amylase and α-glucosidases. Our in silico result revealed that phytocompound Rutin showed the highest binding affinity against α-amylase (1HNY) enzymes at (-11.68 kcal/mol), followed by Karaviloside II (-9.39), Momordicoside F (-9.19), Campesterol (-9.11. While docking against α-glucosidases (4J5T), Rutin again showed the greatest binding affinity (-11.93 kcal/mol), followed by Momordicine (-9.89), and Campesterol (-8.99). Molecular dynamics (MD) simulation research is currently the gold standard for drug design and discovery. Consequently, we conducted simulations of 100 nanoseconds (ns) to assess the stability of protein-ligand complexes based on parameters like RMSD, RMSF, RG, PCA, and FEL. The significance of our findings indicates that rutin from MC might serve as an effective natural therapeutic agent for diabetes management due to its strongest binding affinities with α-amylase and α-glucosidase enzymes. Further research in animals and humans is essential to validate the efficacy of these drug molecules.Communicated by Ramaswamy H. Sarma.

5.
Heliyon ; 10(2): e24907, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304787

RESUMO

Momordica charantia, Nigella sativa, and Anethum graveolens are established medicinal plants possessing noted anti-diabetic and anti-obesity properties. However, the molecular mechanisms underscoring their inhibitory effects on pancreatic lipase, α-glucosidase, and HMG-CoA reductase remain unexplored. This study aimed to elucidate the efficacy of various NS, MC, and AG blends in modulating the enzymatic activity of pancreatic lipase, HMG-CoA reductase, and a-glucosidase, utilizing an integrative approach combining in vitro assessments and molecular modeling techniques. A factorial design matrix generated eight distinct concentration combinations of NS, MC, and AG, subsequently subjected to in vitro enzyme inhibition assays. Molecular docking analyses using AutoDock Vina, molecular dynamics simulations, MMPBSA calculations, and principal component analysis, were executed with Gromacs to discern the interaction dynamics between the compounds and target enzymes. A formulation comprising NS:MC:AG at a 215:50:35 µg/mL ratio yielded significant inhibition of pancreatic lipase (IC50: 74.26 ± 4.27 µg/mL). Moreover, a concentration combination of 215:80:35 µg/mL effectively inhibited both α-glucosidase (IC50: 66.09 ± 3.98 µg/mL) and HMGCR (IC50: 129.03 µg/mL). Notably, MC-derived compounds exhibited superior binding affinity towards all three enzymes, compared to their reference molecules, with diosgenin, Momordicoside I, and diosgenin displaying binding affinities of -11.0, -8.8, and -7.9 kcal/mol with active site residues of pancreatic lipase, α-glucosidase, and HMGCR, respectively. Further, 100 ns molecular dynamics simulations revealed the formation and stabilization of non-bonded interactions between the compounds and the enzymes' active site residues. Through a synergistic application of in vitro and molecular modeling methodologies, this study substantiated the potent inhibitory activity of the NS:MC:AG blend (at a ratio of 215:80:35 µg/mL) and specific MC compounds against pancreatic lipase, α-glucosidase, and HMGCR. These findings provide invaluable insights into the molecular underpinnings of these medicinal plants' anti-diabetic and anti-obesity effects and may guide future therapeutic development.

6.
J Appl Biomater Funct Mater ; 22: 22808000231221067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217369

RESUMO

The research on tissue engineering applications has been progressing to manufacture ideal tissue scaffold biomaterials. In this study, a double-layered electrospun biofiber scaffold biomaterial including Polycaprolactone (PCL)/Collagen (COL) fibrous inner layer and PCL/ Momordica charantia (MC) and Hypericum perforatum (HP) oils fibrous outer layer was developed to manufacture a functional, novel tissue scaffold with the advantageous mechanical and biological properties. The main approach was to combine the natural perspective using medicinal oils with an engineering point of view to fabricate a potential functional scaffold for tissue engineering. Medicinal plants MC and HP are rich in functional oils and incorporation of them in a tissue scaffold will unveil their potential to augment both new tissue formation and wound healing. In this study, a novel double-layered scaffold prototype was fabricated using electrospinning technique with two PCL fiber layers, first is composed of collagen, and second is composed of oils extracted from medicinal plants. Initially, the composition of plant oils was analyzed. Thereafter the biofiber scaffold layers were fabricated and were evaluated in terms of morphology, physicochemistry, thermal and mechanical features, wettability, in vitro bio-degradability. Double-layered scaffold prototype was further analyzed in terms of in vitro biocompatibility and antibacterial effect. The medicinal oils blend provided antioxidant and antibacterial properties to the novel PCL/Oils layer. The results signify that inner PCL/COL layer exhibited advanced biodegradability of 8.5% compared to PCL and enhanced wettability with 11.7° contact angle. Strength of scaffold prototype was 5.98 N/mm2 thanks to the elastic PCL fibrous matrix. The double-layered functional biofiber scaffold enabled 92% viability after 72 h contact with fibroblast cells and furthermore provided feasible attachment sites for the cells. The functional scaffold prototype's noteworthy mechanical, chemical, and biological features enable it to be suggested as a different novel biomaterial with the potential to be utilized in tissue engineering applications.


Assuntos
Hypericum , Momordica charantia , Engenharia Tecidual , Tecidos Suporte/química , Materiais Biocompatíveis/química , Colágeno/química , Poliésteres/química , Óleos de Plantas , Antibacterianos/química
7.
Nat Prod Res ; 38(6): 1060-1066, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37211778

RESUMO

This is the first study describing phenolics of Momordica charantia L. 'Enaja' cultivar (bitter melon) produced in Romania. Total polyphenol content, total tannin content, total flavonoid content, and antioxidant activity of bitter melon stems and leaves, young fruits, and ripe fruits grown in Romania were analysed, along with fruits imported from India. The UPLC-DAD analysis led to the identification of (+)-catechin, (-)-epicatechin, luteolin-3',7-di-O-glucoside, luteolin-7-O-glucoside and vanillic acid. (-)-Epicatechin (859 µg/g) and (+)-catechin (1677 µg/g) were the most abundant compounds in stems and leaves, while in the ripe fruits, luteolin-7-O-glucoside (310 µg/g) was the main phenolic. Stems and leaves were the most active for capturing free DPPH radicals (IC50 = 216.9 ± 11.91 µg/ml); the scavenging activity strongly correlated with the flavonoid content (r = 0.8806, r2 = 0.7754). Momordica charantia fruits from Romania, both young and ripe, are a source of polyphenols as valuable as those imported from India.


Assuntos
Catequina , Momordica charantia , Antioxidantes/farmacologia , Momordica charantia/química , Romênia , Fenóis/análise , Flavonoides , Radicais Livres , Extratos Vegetais/farmacologia , Extratos Vegetais/química
8.
Braz. j. biol ; 84: e255605, 2024. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355882

RESUMO

Abstract Combining ability analysis provides useful information for the selection of parents, also information regarding the nature and magnitude of involved gene actions. Crops improvement involves strategies for enhancing yield potentiality and quality components. Targeting the improvement of respective characters in bitter gourd, combining ability and genetic parameters for 19 characters were estimated from a 6×6 full diallel analysis technique. The results revealed that the variances due to general combining ability (GCA) and specific combining ability (SCA) were highly significant for most of the important characters. It indicated the importance of both additive and non-additive gene actions. GCA variances were higher in magnitude than SCA variances for all the characters studied indicating the predominance of the additive gene effects in their inheritance. The parent P2 (BG 009) appeared as the best general combiner for earliness; P1 (BG 006) for number of fruits, average single fruit weight and fruit yield; P4 (BG 027) for node number of first female flower and days to seed fruit maturity; P3 (BG 011) for fruit length and thickness of the fruit flesh; P5 (BG 033) for 100-seed weight; and P6 for number of nodes per main vine. The SCA effect as well as reciprocal effect was also significant for most of the important characters in different crosses.


Resumo A análise da capacidade de combinação fornece informações úteis para a seleção dos pais, também informações sobre a natureza e a magnitude das ações dos genes envolvidos. A melhoria das safras envolve estratégias para aumentar a potencialidade da produção e os componentes de qualidade. Visando ao aprimoramento dos respectivos caracteres em cabaça-amarga, capacidade de combinação e parâmetros genéticos para 19 caracteres, foram estimados a partir de uma técnica de análise dialélica completa 6 × 6. Os resultados revelaram que as variâncias, devido à capacidade geral de combinação (GCA) e capacidade específica de combinação (SCA), foram altamente significativas para a maioria dos caracteres importantes. Indicou a importância das ações gênicas aditivas e não aditivas. As variâncias GCA foram maiores em magnitude do que as variâncias SCA para todos os caracteres estudados, indicando a predominância dos efeitos do gene aditivo em sua herança. O pai P2 (BG 009) apareceu como o melhor combinador geral para o início; P1 (BG 006) para número de frutos, peso médio de um único fruto e produção de frutos; P4 (BG 027) para número de nó da primeira flor fêmea e dias para a maturidade do fruto da semente; P3 (BG 011) para comprimento do fruto e espessura da polpa do fruto; P5 (BG 033) para peso de 100 sementes; e P6 para o número de nós por videira principal. O efeito SCA, bem como o efeito recíproco, também foi significativo para a maioria dos personagens importantes em cruzamentos diferentes.


Assuntos
Momordica charantia , Produtos Agrícolas , Flores , Melhoria de Qualidade , Frutas/genética
9.
Braz. j. biol ; 842024.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469309

RESUMO

Abstract Combining ability analysis provides useful information for the selection of parents, also information regarding the nature and magnitude of involved gene actions. Crops improvement involves strategies for enhancing yield potentiality and quality components. Targeting the improvement of respective characters in bitter gourd, combining ability and genetic parameters for 19 characters were estimated from a 6×6 full diallel analysis technique. The results revealed that the variances due to general combining ability (GCA) and specific combining ability (SCA) were highly significant for most of the important characters. It indicated the importance of both additive and non-additive gene actions. GCA variances were higher in magnitude than SCA variances for all the characters studied indicating the predominance of the additive gene effects in their inheritance. The parent P2 (BG 009) appeared as the best general combiner for earliness; P1 (BG 006) for number of fruits, average single fruit weight and fruit yield; P4 (BG 027) for node number of first female flower and days to seed fruit maturity; P3 (BG 011) for fruit length and thickness of the fruit flesh; P5 (BG 033) for 100-seed weight; and P6 for number of nodes per main vine. The SCA effect as well as reciprocal effect was also significant for most of the important characters in different crosses.


Resumo A análise da capacidade de combinação fornece informações úteis para a seleção dos pais, também informações sobre a natureza e a magnitude das ações dos genes envolvidos. A melhoria das safras envolve estratégias para aumentar a potencialidade da produção e os componentes de qualidade. Visando ao aprimoramento dos respectivos caracteres em cabaça-amarga, capacidade de combinação e parâmetros genéticos para 19 caracteres, foram estimados a partir de uma técnica de análise dialélica completa 6 × 6. Os resultados revelaram que as variâncias, devido à capacidade geral de combinação (GCA) e capacidade específica de combinação (SCA), foram altamente significativas para a maioria dos caracteres importantes. Indicou a importância das ações gênicas aditivas e não aditivas. As variâncias GCA foram maiores em magnitude do que as variâncias SCA para todos os caracteres estudados, indicando a predominância dos efeitos do gene aditivo em sua herança. O pai P2 (BG 009) apareceu como o melhor combinador geral para o início; P1 (BG 006) para número de frutos, peso médio de um único fruto e produção de frutos; P4 (BG 027) para número de nó da primeira flor fêmea e dias para a maturidade do fruto da semente; P3 (BG 011) para comprimento do fruto e espessura da polpa do fruto; P5 (BG 033) para peso de 100 sementes; e P6 para o número de nós por videira principal. O efeito SCA, bem como o efeito recíproco, também foi significativo para a maioria dos personagens importantes em cruzamentos diferentes.

10.
J Biomol Struct Dyn ; : 1-12, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38069604

RESUMO

Type 2 diabetes accounts for the largest percentage of all diabetic cases worldwide. Cucurbitane-type triterpenes are mainly found in Momordica charantia and possess excellent pharmacological activities. This study was designed to identify cucurbitane-type triterpene from Momordica charantia using Liquid Chromatography-Mass Spectrometry (LC-MS) analysis, examine its anti-diabetic property with molecular docking against diabetes enzymes (alpha-amylase, alpha-glucosidase, dipeptidyl dipeptidase IV and peroxisome proliferator-activated receptor gamma). The stability and interactions of the docked complexes were investigated using molecular dynamics simulation, while the pharmacokinetic and toxicity profile of the ligand was examined using an ADMET server. (23E)-Cucurbita-5,23,25-triene-3,7-dione (CUB) was identified from the LC-MS profiling of the methanolic extract of M. charantia. The molecular docking studies showed that the identified phytochemical elicited good binding energy against all the target receptors. The RMSD and RMSF plots obtained from the 100 ns molecular dynamics simulation showed that the ligand was stable and established substantial interactions with the amino acid residues of the diabetes enzymes which were confirmed by the MM\GBSA computations. The pharmacokinetic and toxicity properties of the ligand showed it was safer as an anti-diabetic drug candidate. Extensive isolation, in vitro and in vivo studies of the ligand against the diabetic enzymes is recommended.Communicated by Ramaswamy H. Sarma.

11.
Food Sci Nutr ; 11(12): 7626-7637, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107145

RESUMO

The antidiabetic activity of saponins extracted from Momordica charantia (MCS) on streptozotocin-induced diabetic mice was investigated in order to elucidate the mechanism of MCS for exerting hypoglycemic effects. Saponins were first extracted from M. charantia L. and their composition was analyzed. The diabetic Kunming mice were fed low-dose saponins from M. charantia L. and high-dose MCS, using normal mice and diabetic mice as controls. Body weight, blood glucose level, oral glucose tolerance, serum C-peptide level, hepatic antioxidant capacity, hepatic glycogen and hexokinase in liver tissues, serum blood lipid level, and alpha-glucosidase activity in small intestines were measured, and microstructure of pancreatic islet was analyzed. The results showed that the total content of seven triterpenoid compounds in MCS was 18.24 µg/mg, with Momordicoside K having the highest content at 11.66 µg/mg. Diabetic mice treated with MCS at 100 and 200 mg/kg body weight daily for 30 days showed a maximum glucose reduction (p < .05) of 12.63% and 26.47%, respectively. MCS significantly decreased levels of postprandial hyperglycemia, serum lipid, α-glucosidase activity, and liver malondialdehyde. Additionally, levels of serum C-peptide and liver glycogen, as well as hexokinase and antioxidant enzyme activity, were significantly increased compared to the diabetic control groups. Histopathological results showed that MCS markedly reduced degenerative changes in islet ß-cells. It is concluded that MCS exerts antidiabetic effects by improved hypoglycemic, hypolipidemic, and antioxidant effects, increased hexokinase activity and glycogen synthesis, and enhanced reparative effects on the histological architecture and insulin secretion function of the pancreas.

12.
Arch Microbiol ; 206(1): 37, 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38142245

RESUMO

This study was designed to evaluate the effectiveness of recombinant polypeptide-p derived from Momordica charantia on diabetic rats. In this research, the optimized sequence of polypeptide-p gene fused to a secretion signal tag was cloned into the expression vector and transformed into probiotic Saccharomyces boulardii. The production of recombinant secretion protein was verified by western blotting, HPLC, and mass spectrometry. To assay recombinant yeast bioactivity in the gut, diabetic rats were orally fed wild-type and recombinant S. boulardii, in short SB and rSB, respectively, at two low and high doses as well as glibenclamide as a reference drug. In untreated diabetic and treated diabetic + SB rats (low and high doses), the blood glucose increased from 461, 481, and 455 (mg/dl), respectively, to higher than 600 mg/dl on the 21st day. Whereas glibenclamide and rSB treatments showed a significant reduction in the blood glucose level. The result of this study promised a safe plant-source supplement for diabetes through probiotic orchestration.


Assuntos
Diabetes Mellitus Experimental , Probióticos , Saccharomyces boulardii , Ratos , Animais , Saccharomyces boulardii/genética , Saccharomyces cerevisiae/genética , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glibureto/metabolismo , Glibureto/uso terapêutico , Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Clonagem Molecular
13.
Heliyon ; 9(11): e21693, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027700

RESUMO

Aspartame is widely used artificial sweetener. However, chronic exposure to aspartame led to spatial memory impairment and elevated oxidative stress in the brain. Extract of turmeric rhizome (Curcuma longa) (TUR) and extract of bitter melon (Momordica charantia) (BM) is known to have antioxidant activity. The present study was aimed to examine the neuroprotective potential of TUR and BM extracts, either as single or as combination, against the effects of aspartame in the brain. Here, Sprague-Dawley rats fed with aspartame (40 mg/kg BW) for 28 days were compared with rats fed with extract and aspartame. To assess neuroprotective potential, rats were given extract 7 days before and during aspartame treatment. Spatial memory was assessed with Morris water maze test followed with H&E staining of hippocampal region. Brain lipid peroxidation and enzymatic activity of malondialdehyde (MDA), glutathione peroxidase (GPx), and Acetylcholinesterase (AChE) were measured to probe status of oxidative stress in the brain. Aspartame-treated rats demonstrated spatial memory impairment and reduced number of hippocampal cells and elevated levels of MDA, downregulated activity of GPx and elevated activity of AChE. In contrast, animals received both aspartame and extract demonstrated better spatial memory function, higher number of hippocampal areas, increased GPX activity, reduced MDA levels, and decreased AChE activity were observed in the brain of extract-treated rats. Taken together, our results suggest that extract of TUR rhizome and BM fruit exhibit antioxidant activity which may contribute to the neuroprotective effects against aspartame-induced memory impairment in rats.

14.
J Sci Food Agric ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012056

RESUMO

BACKGROUND: Utilizing the fruit extract of bitter melon (Momordica charantia), zinc nanoparticles (ZnO-NPs) were synthesized through a green approach, a novel endeavor in current literature. The primary objective was to evaluate the phytotoxic and growth-promoting effects of these ZnO-NPs on wheat, chosen as a test plant. Structural characterization using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy revealed the hexagonal wurtzite crystal structure of ZnO-NPs and identified spherical M. charantia-produced (MC)-ZnO-NPs ranging in size from 48 to 150 nm. RESULTS: At a concentration of 2000 mg L-1 , both MC- and raw-ZnO-NPs augmented wheat germination percentages. Furthermore, raw-ZnO-NPs at 4000 mg L-1 demonstrated the highest chlorophyll content. Despite the plant's increased accumulation of MC-ZnO-NPs, no statistically significant toxic effects were observed. The antibacterial efficacy of ZnO-NPs was assessed against Gram-positive and Gram-negative microorganisms. MC-ZnO-NPs exhibited a 67.9% inhibition zone against Escherichia coli at 0.04 mg L-1 , while raw-ZnO-NPs exhibited 75.6% inhibition at the same concentration. CONCLUSION: The study suggests that ZnO-NPs synthesized from M. charantia exhibit both growth-promoting effects on wheat without significant phytotoxicity and potent antibacterial properties, particularly against Escherichia coli. However, further investigations are warranted to comprehensively understand the interactions between ZnO-NPs and plants. Future research should focus on M. charantia, exploring its enhanced effects on plant growth, development and antibacterial attributes. These findings hold promise for potential agricultural applications, emphasizing the need for detailed phytotoxicological assessments of ZnO-NPs. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

15.
Plants (Basel) ; 12(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37896048

RESUMO

Pericarp color is a crucial commercial trait influencing consumer preferences for bitter gourds. However, until now, the gene responsible for this trait has remained unidentified. In this study, we identified a gene (McAPRR2) controlling pericarp color via a genome-wide association study (GWAS) utilizing the resequencing data of 106 bitter gourd accessions. McAPRR2 exhibits three primary haplotypes: Hap1 is a wild type with a green pericarp, Hap2 is a SA (South Asian) and SEA (Southeast Asia) type with a green pericarp, and Hap3 is primarily a SEA type with a light green pericarp. The McAPRR2 haplotype is significantly correlated with both pericarp color and ecological type. Importantly, McAPRR2 with the light green pericarp demonstrated premature termination due to a 15 bp sequence insertion. The phylogenetic tree clustered according to pericarp color and ecological type, using SNPs located in the McAPRR2 gene and its promoter. High πwild/SEA and πSA/SEA values indicate high nucleotide diversity between wild and SEA types and between SA and SEA types in the McAPRR2 gene. The haplotypes, phylogenetic tree, and nucleotide diversity of McAPRR2 suggest that McAPRR2 has undergone domestication selection. This study identifies McAPRR2 as the key gene determining pericarp color in bitter gourds and introduces a novel insight that McAPRR2 is subject to domestication selection.

16.
Biomed Pharmacother ; 168: 115726, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37862973

RESUMO

Momordica charantia polysaccharide (MCP) is a potential drug for the prevention and alleviation of diabetes mellitus (DM) and diabetic retinopathy (DR). This study aimed to investigate the potential protective effects of MCP on early-stage DR and explore the underlying mechanisms. The model group (DM group) and treatment group (D+H group) were established by inducing type 1 DM using a single dose of streptozotocin (STZ) at 60 mg/kg. After modeling, the D+H group was orally administered a 500 mg/kg dose of MCP solution once daily for 12 weeks. Monitoring of systemic indicators (FBG, body weight, general condition) and retinal tissue inflammation and apoptosis (HE staining, IL-6, MCP-1, TNF-α, VEGF, NF-κB, Caspase-3) in this study demonstrated that MCP intervention alleviated both DM and DR. MCP improved the body weight and general condition of DM rats by reducing FBG levels. It also enhanced the anti-inflammatory and anti-apoptotic capabilities of retinal neurons and microvessels by modulating the actions of cytokines, thereby further regulating the inflammation and apoptosis of retinal neurons and microvessels. The underlying mechanisms may be associated with the downregulation of NF-κB and Caspase-3 pathway protein expression, as well as the downregulation of mRNA expression of NF-κB and Caspase-3 pathway genes. Further research is needed to elucidate the potential mechanisms underlying the protective effects of MCP on DR. MCP may emerge as a selective medication for the prevention and alleviation of DM and a novel natural medicine for the prevention and alleviation of DR.


Assuntos
Diabetes Mellitus Tipo 1 , Retinopatia Diabética , Momordica charantia , Ratos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/prevenção & controle , Retinopatia Diabética/genética , NF-kappa B/uso terapêutico , Caspase 3 , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Inflamação/tratamento farmacológico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Peso Corporal
17.
Plant Dis ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814516

RESUMO

Fusarium wilt fungus infection of bitter gourd, a major melon vegetable crop, results in massive yield reduction. Through extensive testing, some Fusarium wilt resistant bitter melon varieties have been produced, but the molecular mechanism of their resistance to the fungus remains unknown. Importantly, after bitter melon plants are infected with the Fusarium oxysporum f. sp. momordicae (FOM), apart from altering their gene expression levels, numerous metabolites are produced because of the interaction with the fungus. In the current study, an untargeted metabolomics analysis was performed to investigate the metabolic difference between resistant and susceptible bitter gourd varieties at various timepoints postinoculation with FOM based on liquid chromatography with mass spectrometry. A total of 1595 positive ion mode and 922 negative ion mode metabolites were identified. Between the resistant and susceptible bitter gourd varieties, 213 unique differentially abundant metabolites (DAMs) were identified and they were mainly enriched in alpha-linolenic acid metabolism pathway. By comparing the postinoculation with preinoculation time points in the resistant and susceptible bitter gourd varieties, 93 and 159 DAMs were identified, respectively. These DAMs were mainly related to beta-alanine metabolism among others. Multiple metabolites in the biosynthesis of phenylpropanoids pathway showed greater variability in the susceptible than the resistant varieties, which may be related to senescence and mortality in the susceptible variety. These results provide new insights into the understanding of metabolite changes after FOM infection and a theoretical foundation for the elucidation of the bitter gourd disease resistance mechanism.

18.
Cureus ; 15(10): e46597, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37808602

RESUMO

Herb-induced liver injury (HILI) is a global concern due to the uptrend in Complementary and Alternative Medicine (CAM). The authors add to the current literature by reporting a case of a 61-year-old man with recent travel to Haiti. His past medical history include hepatitis C virus treated in 2021 with a sustained virologic response (SVR). He presented with profound weakness and abnormal liver transaminases in the thousands. It was initially unclear what the etiology of the patient's hepatocellular necrosis was, however, the level of abnormality was most consistent with either toxic metabolic injury or vascular ischemic injury. We initiated N-acetylcysteine and vitamin K and had a positive outcome. Upon further questioning, he admitted to consuming an herbal product cleansing tea called "asowosi" in large quantities. We searched the botanical name of the extract and found the active ingredient was Momordica charantia. The team utilized the updated Roussel Uclaf Causality Assessment Method (RUCAM), and the results demonstrated a highly probable relationship with M. charantia.

19.
Molecules ; 28(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687011

RESUMO

Plant-derived extracellular vesicles are functional nanovesicles that have significant applications in both disease prevention and treatment, as well as for use as drug carriers. Momordica charantia is a widely consumed food that has both medicinal and nutritional properties and has shown intervention in diabetes and inflammation caused by oxidative damage. In this study, Momordica charantia-derived extracellular vesicles (MCEVs) were extracted and demonstrated to have excellent antioxidant activity by characterization, lipid composition analysis, protein domain analysis, and in vitro antioxidant measurement. In addition, in vivo studies indicated that the MCEVs could restore ulcerative colitis by regulating oxidation and inflammatory factors. Therefore, the antioxidant properties of MCEVs may be important in protecting the colon from inflammation, which provides new insights into the application of MCEVs as drugs or vectors for intervention in ulcerative colitis.


Assuntos
Colite Ulcerativa , Vesículas Extracelulares , Momordica charantia , Colite Ulcerativa/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Inflamação
20.
J Biomol Struct Dyn ; : 1-12, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676311

RESUMO

Dengue fever is now one of the major global health concerns particularly for tropical and sub-tropical countries. However, there has been no FDA approved medication to treat dengue fever. Researchers are looking into DENV NS5 RdRp protease as a potential therapeutic target for discovering effective anti-dengue agents. The aim of this study to discover dengue virus inhibitor from a set of five compounds from Momordica charantia L. using a series of in-silico approaches. The compounds were docked into the active area of the DENV-2 NS5 RdRp protease to obtain the hit compounds. The successful compounds underwent additional testing for a study on drug-likeness similarity. Our study obtained Momordicoside-I as a lead compound which was further exposed to the Cytochrome P450 (CYP450) toxicity analysis to determine the toxicity based on docking scores and drug-likeness studies. Moreover, DFT studies were carried out to calculate the thermodynamic, molecular orbital and electrostatic potential properties for the lead compound. Moreover, the lead compound was next subjected to molecular dynamic simulation for 200 ns in order to confirm the stability of the docked complex and the binding posture discovered during docking experiment. Overall, the lead compound has demonstrated good medication like qualities, non-toxicity, and significant binding affinity towards the DENV-2 RdRp enzyme.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...